<BTDR-2 DIGI-LOG[™] REVERB MODULE>

A great digital reverb sound that easily replaces a spring reverberation unit

NEW ITEM

Features

Small package is half the size of the BTDR-1

Stereo outputs may be summed for mono operation

Simple interface requires only input, output, +5V, and ground

AC-coupled input and outputs require no external capacitors

Specifications

Parameter	Symbol	Minimun	Typical	Maximum	Unit
Supply Voltage	Vcc	4.5	5.0	5.5	V
Supply Current	Icc		60	100	mA
Input Voltage	VIN			1.5	VPEAK
Voltage Gain			-3		dB(each output)
Residual Noise			-77	TBD	dBV
Input Impedance	Zin		10k		Ω
Output Impedance	Zout		220		Ω
Operating Temperature		-40		+85	С

Available Options

	Decay				
	Туре	Time(T60)			
S	short	2.0s			
М	medium	2.5s			
L	long	2.85s			

Ordering Code

Note: Pin 2 and 4 are internally connected. See the Application Circuit for more information on how to connect the grounds.

Dimensions

Application Circuit

A regulated 5V supply is mandatory. An LDO regulator is recommended for battery-powered devices. The following example circuits are for instrument-level signals:

- "Common" is "Signal GND" in a split-supply circuit or Vcc/2 in a single-supply circuit.
- Audio noise during power-down can be minimized by quickly discharging supply from 5V to 0V; otherwise, external output muting may be necessary.
- R1, R2 and C1 create a pre-EQ high-pass filter and may be adjusted to taste.

- High-pass frequency (Hz) = $1/(\pi \cdot C1 \cdot R1)$

- High frequency gain (dB) = $20 \cdot \log(2 \cdot R2/R1)$

- High-pass frequency (Hz) = 1/(2 π \cdot C1 \cdot R1)

- High frequency gain (dB) = $20 \cdot \log(R2/R1)$